Face Recognition Using Shape and Texture
نویسندگان
چکیده
We introduce in this paper a new face coding and recognition method which employs the Enhanced FLD (Fisher Linear Discrimimant) Model (EFM) on integrated shape (vector) and texture (‘shape-free’ image) information. Shape encodes the feature geometry of a face while texture provides a normalized shape-free image by warping the original face image to the mean shape, i.e., the average of aligned shapes. The dimensionalities of the shape and the texture spaces are first reduced using Principal Component Analysis (PCA). The corresponding but reduced shape and texture features are then integrated through a normalization procedure to form augmented features. The dimensionality reduction procedure, constrained by EFM for enhanced generalization, maintains a proper balance between the spectral energy needs of PCA for adequate representation, and the FLD discrimination requirements, that the eigenvalues of the within-class scatter matrix should not include small trailing values after the dimensionality reduction procedure as they appear in the denominator.
منابع مشابه
3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملA shape- and texture-based enhanced Fisher classifier for face recognition
This paper introduces a new face coding and recognition method, the enhanced Fisher classifier (EFC), which employs the enhanced Fisher linear discriminant model (EFM) on integrated shape and texture features. Shape encodes the feature geometry of a face while texture provides a normalized shape-free image. The dimensionalities of the shape and the texture spaces are first reduced using princip...
متن کاملUsing 3D Morphable Models for face recognition in video
The 3D Morphable Face Model (3DMM)[1] has been used for over a decade for creating 3D models from single images of faces. This model is based on a PCA model of the 3D shape and texture generated from a limited number of 3D scans. The goal of fitting a 3DMM to an image is to find the model coefficients, the lighting and other imaging variables from which we can remodel that image as accurately a...
متن کاملShape Invariant Recognition of Segmented Human Faces using Eigenfaces
This paper describes an efficient approach for face recognition as a two step process: 1) segmenting the face region from an image by using an appearance based model, 2) using eigenfaces for person identification for segmented face region. The efficiency lies not only in generation of appearance models which uses the explicit approach for shape and texture but also the combined use of the afore...
متن کاملDynamic Local Feature Analysis for Face Recognition
This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by using our proposed adaptive edge detecting method that can reduce the effect on different lighting c...
متن کامل